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Graphs

G = (V ,E )

vertex set V is finite

edges E ⊆ {uv : u, v ∈ V }
undirected
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Example 1: Modularity in gene co-expression networks

vertices represent genes

uv ∈ E if expression of gene u has high correlation with
expression of gene v

Figure: Carlson, Zhang, Fang, Mischel, Howrvath, and Nelson. Gene connectivity, function, and sequence

conservation: predictions from modular yeast co-expression networks, BMC Genomics 2006, 7:40.



Introduction Bounds Exact Algorithms Linear Systems Conclusions

Modularity in gene co-expression networks
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Cohesive subgraphs: Completeness and cliques

Figure: ω(G):= max cardinality of a clique

All vertex pairs are adjacent (restrictive).
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Cohesive subgraphs: k-plexes

Figure: ωk(G):= max cardinality of a k-plex

User-defined level of mutual adjacency (a relaxation).
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A general notion of graph cohesion

Definition (Seidman and Foster 1978)

Fix an integer k ≥ 1. K ⊆ V is a k-plex if

degG [K ](v) ≥ |K | − k for all v ∈ K .

1-plexes are complete graphs

k-plexes relax the structure of complete graphs
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Example 2: Social Networks

vertices are people

edges represent specific types of relations or interdependencies

values
financial exchange
friendship or kinship
conflict
disease transmission

Moody, James, and Douglas R. White (2003). ”Structural Cohesion and Embeddedness: A Hierarchical Concept of

Social Groups.” American Sociological Review 68(1):103-127.



Introduction Bounds Exact Algorithms Linear Systems Conclusions

Social Networks
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Other relaxations: k-club
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k-plexes

Figure: ω2(G):= max cardinality of a 2-plex
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Example 3: Retail location

A successful company plans to open many new outlets.

vertices represent potential locations

research indicates that stores closer than x miles will compete
for customers (market cannibalism)

uv ∈ E if location u is within x miles of location v
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Retail location
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Stable sets

All vertex pairs are non-adjacent.
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Co-k-plexes

User-defined level of non-adjacency (a relaxation).
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Definition

Definition (Seidman and Foster 1978)

Fix an integer k ≥ 1. S ⊆ V is a co-k-plex if

degG [S](v) ≤ k − 1 for all v ∈ S .

co-1-plexes are isolated vertices (stable sets)

co-k-plexes are degree-bounded subgraphs
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Cohesion and sparsity

Detecting cohesive subgraphs (k-plexes) is computationally
equivalent to detecting sparse subgraphs (co-k-plexes).

Why?
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Cohesive in G ...

Figure: G = (V , E )
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...is sparse in Ḡ

Figure: Ḡ = (V , Ē ), where e ∈ Ē ⇔ e /∈ E .
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Previous Work

Seidman and Foster (1978)

introduced k-plexes in context of social network analysis
derived basic properties

Balasundaram, Butenko, Hicks, and Sachdeva (2006)

established NP-completeness of Maximum k-plex
studied the k-plex polytope
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Upper bound on the size of cohesive subgraphs

K S

If K ⊆ V is complete and S ⊆ V is a stable set, then

|K ∩ S | ≤ 1.

Consequently, if V partitions into stable sets S1, ...,Sm, then

|K | = |K ∩ V | = |K ∩ (∪m
i=1Si)| =

m∑
i=1

|K ∩ Si | ≤
m∑

i=1

1 = m.
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Graph coloring and the chromatic number

Figure: ω(G) ≤ χ(G)
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Analogously...

If K ⊆ V is a k-plex (cohesive) and
S ⊆ V is a co-k-plex (sparse), then

|K ∩ S | ≤ 2k − 2 + k mod 2.

Consequently, if V partitions into co-k-plexes S1, ...,Sm, then

|K | = |K ∩ (∪m
i=1Si)| =

m∑
i=1

|K ∩ Si | ≤ m(2k − 2 + k mod 2).
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Co-k-plex coloring and the co-k-plex chromatic number

Figure: ω2(G) ≤ χ2(G)
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Computational Results (2.2 GHz Dual-Core AMD Opteron processor with 3 GB of memory)

Table: Coloring Results

G χ2(G) seconds χ3(G) seconds χ4(G) seconds
brock200-1 83 0.1 139 0.1 167 0.0
brock400-2 152 0.7 272 0.1 320 0.2
brock800-2 224 1.7 400 2.6 535 1.6
c-fat200-1 15 0.0 20 0.0 21 0.0
c-fat500-1 22 0.1 23 0.0 24 0.0
C125.9 84 0.0 116 0.0 122 0.0
hamming6-2 32∗ 0.0 59 0.0 61 0.0
hamming8-2 128∗ 0.1 231 0.1 251 0.1
johnson8-2-4 10 0.0 18 0.0 19 0.0
johnson16-2-4 34 0.0 76 0.0 95 0.0
johnson32-2-4 75 1.0 224 0.5 299 0.3
keller4 44 0.1 90 0.0 111 0.0
MANN-a9 37 0.0 42 0.0 45 0.0
p-hat300-1 35 0.0 63 0.0 89 0.0
p-hat700-1 68 0.4 124 0.3 169 0.5
p-hat1500-1 125 4.0 230 6.3 326 4.4
san200-0.7-2 57 0.0 113 0.0 144 0.1
∗ optimal
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Lower bound on the size of cohesive subgraphs

If we can find a k-plex K ⊆ V , then

|K | ≤ ωk(G ).

For a lower bound, use local search to find feasible k-plexes.
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Computational Results (2.2 GHz Dual-Core AMD Opteron processor with 3 GB of memory)

Table: Lower Bound Results

G ω2(G) seconds ω3(G) seconds ω4(G) seconds
brock200-1 25 1 27 1 31 1
brock400-2 27 2 31 2 35 2
brock800-2 22 15 26 15 29 15
c-fat200-1 12∗ 2 12∗ 2 12∗ 2
c-fat500-1 14∗ 20 14∗ 19 14∗ 19
C125.9 42 0 47 0 54 0
hamming6-2 32∗ 0 32∗ 0 32 0
hamming8-2 128∗ 0 128∗ 0 128 0
johnson8-2-4 4 0 8∗ 0 9∗ 0
johnson16-2-4 8 0 16 0 18 0
johnson32-2-4 16 2 32 2 36 2
keller4 15∗ 1 18 1 20 1
MANN-a9 22 0 30 0 36∗ 0
p-hat300-1 9 4 11 4 12 4
p-hat700-1 10 33 13 33 16 32
p-hat1500-1 13 202 14 204 16 204
san200-0.7-2 26 1 36 1 48 1
∗ optimal
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Max k-plex Algorithm: Type 1∗

V := {v1, ..., vn}
Si := {vi , ..., vn} for 1 ≤ i ≤ n

for i : 1 to n
Search Si for largest k-plex containing vi .

end

∗Applegate and Johnson; Carraghan and Pardalos
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Max k-plex Algorithm: Type 1
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Max k-plex Algorithm: Type 1

UK

Figure: U = {v ∈ V \ K : K ∪ {v} is a k-plex}.
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Max k-plex Algorithm: Type 1

UK

Figure: U = {v ∈ V \ K : K ∪ {v} is a k-plex}.
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Computational Results (2.2 GHz Dual-Core AMD Opteron processor with 3 GB of memory)

Table: k-plex1 Results

G ω2(G) seconds ω3(G) seconds ω4(G) seconds
brock200-1 25 - 28 - 31 -
brock400-2 27 - 31 - 35 -
brock800-2 22 - 26 - 29 -
c-fat200-1 12 2 12 12 12 378
c-fat500-1 14 24 14 393 14 -
C125.9 42 - 49 - 56 -
hamming6-2 32 0 32 - 36 -
hamming8-2 128 1 128 - 128 -
johnson8-2-4 5 0 8 0 9 1
johnson16-2-4 10 - 16 - 18 -
johnson32-2-4 21 - 32 - 36 -
keller4 15 - 19 - 22 -
MANN-a9 26 103 36 4 36 592
p-hat300-1 10 107 12 - 14 -
p-hat700-1 12 - 13 - 16 -
p-hat1500-1 13 - 14 - 16 -
san200-0.7-2 26 - 36 - 48 -
- exceeded 3600 second time limit
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Max k-plex Algorithm: Type 2∗

V := {v1, ..., vn}
Si := {vi , ..., vn} for 1 ≤ i ≤ n

ck(i) := ωk(G [Si ])

for i : (n − 1) to 1
Search Si for largest k-plex containing vi .
ck(i) ∈ {ck(i + 1), ck (i + 1) + 1}.

end

∗Österg̊ard
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Max k-plex Algorithm: Type 2

UK

Figure: j := min{i : vi ∈ U}; U ⊆ Sj ⇒ ωk(G [U]) ≤ ck(j).
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Computational Results (2.2 GHz Dual-Core AMD Opteron processor with 3 GB of memory)

Table: k-plex2 Results

G ω2(G) sec. ω3(G) sec. ω4(G) sec.
brock200-1 23 - 24 - 26 -
brock400-2 22 - 23 - 23 -
brock800-2 18 - 20 - 21 -
c-fat200-1 12 0 12 0 12 18
c-fat500-1 14 0 14 8 14 1234
C125.9 34 - 37 - 39 -
hamming6-2 32 0 32 1 40 951
hamming8-2 128 1 102 - 44 -
johnson8-2-4 5 0 8 0 9 0
johnson16-2-4 10 - 15 - 18 -
johnson32-2-4 21 - 24 - 25 -
keller4 15 913 21 - 16 -
MANN-a9 26 0 36 2 36 141
p-hat300-1 10 5 12 416 13 -
p-hat700-1 13 383 13 - 13 -
p-hat1500-1 12 - 14 - 13 -
san200-0.7-2 24 - 34 - 46 -
- exceeded 3600 second time limit
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k-plex2 wins

Table: Results Summary

Algorithm k = 2 k = 3 k = 4 Total
k-plex1-noBounds 13 8 5 26
k-plex1 16 7 5 28
k-plex2 19 14 11 44
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Linear inequalities

Let G = (V ,E ), S ⊆ V , and n = |V |.

Consider the n-dimensional binary vector xS where xS
v = 1 if v ∈ S

and xS
v = 0 otherwise.

v5

V1

v4 v3

v2

Represent the stable set S = {v1, v3} as xS = [1, 0, 1, 0, 0]T .
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Linear inequalities

K S

If S ⊆ V is a stable set and K ⊆ V is complete in G , then

∑
v∈K

xS
v ≤ 1

is a valid inequality.
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Polyhedra and linear programming

Each valid inequality defines a halfspace in Rn.

The intersection of all such halfspaces defines the polytope

P := {x ∈ Rn : Ax ≤ b}.

The linear program

maxx∈P

∑
v∈V

xv

determines the largest stable set in G .
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Analogously...

Inequalities for co-k-plexes define the co-k-plex polytope

Pk := {x ∈ Rn : Ax ≤ b}.

The linear program

maxx∈P

∑
v∈V

xv

determines the largest co-k-plex in G .
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Defining Pk

Definition

A facet is a valid inequality which must be present in any linear
defining system Ax ≤ b (necessity).

The facets together form a defining system (sufficiency).

We focused on finding facets for the co-2-plex polytope.

Co-2-plexes are subgraphs with degree at most one.



Introduction Bounds Exact Algorithms Linear Systems Conclusions

2-plexes

Theorem (McClosky and Hicks, Balasundaram et al.)

If K is a maximal 2-plex in G such that |K | > 2, then

∑
v∈K

xv ≤ 2

is a facet for P2(G ).
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Cycles

Theorem (McClosky and Hicks)

If Cn is a chordless cycle such that n > 4 and n �≡ 0 mod 3, then

∑
v∈V (Cn)

xv ≤
⌊

2n

3

⌋

is a facet for P2(C
n).
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Webs

Definition

For fixed integers n ≥ 1 and p, 1 ≤ p ≤ ⌊
n
2

⌋
,

the web W (n, p) has vertices V = {1, ..., n} and edges

E = {(i , j) | j = i + p, ..., i + n − p; ∀ i ∈ V }.

Figure: W(8,3)
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Web, cont.

Theorem (McClosky and Hicks)

If gcd(n, p + 1)=1 and p <
⌊

n
2

⌋
, then

∑
v∈V (W (n,p))

xv ≤ p + 1

is a facet for P2(W (n, p)).
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Summary

Algorithmic

co-k-plex coloring
k-plex heuristics
exact algorithms

Polyhedral

linear description of the co-2-plex polytope
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Future Work: Algorithmic

exact co-k-plex coloring

k-plex heuristics
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Future Work: Polyhedral

find facets for co-k-plex polyhedra (k ≥ 3)

computational study on facets we found
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